Structured Convex Optimization under Submodular Constraints

نویسندگان

  • Kiyohito Nagano
  • Yoshinobu Kawahara
چکیده

A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimization methods by a reduction to a maximum flow problem. Furthermore, we give some applications, including sparse optimization methods, in which the proposed methods are effective. Additionally, we evaluate the performance of the proposed method through computational experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured sparsity-inducing norms through submodular functions

Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the l1-norm. In this paper, we investigate m...

متن کامل

Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization

We consider the minimization of submodular functions subject to ordering constraints. We show that this optimization problem can be cast as a convex optimization problem on a space of uni-dimensional measures, with ordering constraints corresponding to first-order stochastic dominance. We propose new discretization schemes that lead to simple and efficient algorithms based on zero-th, first, or...

متن کامل

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity

Online optimization has been a successful framework for solving large-scale problems under computational constraints and partial information. Current methods for online convex optimization require either a projection or exact gradient computation at each step, both of which can be prohibitively expensive for large-scale applications. At the same time, there is a growing trend of non-convex opti...

متن کامل

Parametric Maxflows for Structured Sparse Learning with Convex Relaxations of Submodular Functions

The proximal problem for structured penalties obtained via convex relaxations of submodular functions is known to be equivalent to minimizing separable convex functions over the corresponding submodular polyhedra. In this paper, we reveal a comprehensive class of structured penalties for which penalties this problem can be solved via an efficiently solvable class of parametric maxflow optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1309.6850  شماره 

صفحات  -

تاریخ انتشار 2013